Note

NEW EQUATIONS IN NON-ISOTHERMAL KINETICS TAKING INTO ACCOUNT THE DEPENDENCES $A(\alpha)$ AND $E(\alpha)$

E. URBANOVICI and E. SEGAL

Department of Physical Chemistry and Electrochemical Technolow, Faculty of Chemical Engineering, Polytechnic Institute of Bucharest, Bulevardul Republicii 13, Bucharest (Romania)

(Received 18 August 1985)

In previous papers [1,2] we presented two new methods to estimate the values of non-isothermal kinetic parameters. We applied integration over small temperature intervals with several linear heating rates. In the first paper [1] the conversion function, $f(\alpha)$, was determined using small intervals of the conversion degree, α , whereas in the second one [2] an average function, $\bar{f}(\alpha)$, was determined using a larger interval of α values. Following these investigations, this paper deals with estimating the pre-exponential factor and $\bar{f}(\alpha)$ using the second method [2] for the dehydration of CaC₂O₄. $H₂O$ and the decomposition of $KMnO₄$. Results concerning the activation energy of these two reactions were presented in a previous paper [3].

FORMULAE USED [l-3]*

$$
E = R \frac{T_{1ik} T_{2ik}}{T_{2ik} - T_{1ik}} \ln \frac{\Delta t_1}{\Delta t_2}
$$
 (1)

To obtain $f(\alpha)$ the following formulae should be used

$$
\frac{\int_{\alpha_a}^{\alpha_b} \frac{d\alpha}{f(\alpha)}}{\int_{\alpha_b}^{\alpha_c} \frac{d\alpha}{f(\alpha)}} = R
$$
\n(2)

where

$$
R = \frac{R_1 + R_2}{2} \tag{3}
$$

^{*} To understand the meanings of the notations, refs. 1-4 should be consulted.

and

$$
R_i = \frac{\beta_{i\mathbf{b}\mathbf{c}}}{\beta_{i\mathbf{a}\mathbf{b}}} \frac{\int_{T_{i\mathbf{a}}}^{T_{i\mathbf{b}}} e^{-E/RT} dT}{\int_{T_{i\mathbf{b}}}^{T_{i\mathbf{c}}} e^{-E/RT} dT}
$$
(4)

The integrals were evaluated by using Simpson's method [4]

$$
\int_{x_0}^{x_2} y \, dx = \frac{h}{3} (y_0 + 4y_1 + y_2)
$$
\n
$$
h = \frac{x_2 - x_0}{2}
$$
\n(6)

Using the average theorem to calculate the temperature integral [4J we obtained for the ore-exponential factor

$$
A_{l} \approx \frac{e^{E/RT_{lik}}}{\Delta t_{lik}} \int_{\alpha_{i}}^{\alpha_{k}} \frac{d\alpha}{f(\alpha)}
$$
(7)

$$
\log A = \frac{\log A_1 + \log A_2}{2} \tag{8}
$$

THE FUNCTION $\bar{f}(\alpha)$

Dehydration of $CaC_2O₄ \cdot H₂O$

 \overline{E} = 24.26 kcal mol⁻¹ $\alpha_a = 0.0417, \ \alpha_b = 0.5000, \ \alpha_c = 0.9583$ $T_{1a} = 406.4 \text{ K}, T_{1b} = 492.2 \text{ K}, T_{1c} = 441.2 \text{ K}$ $\Delta t_{1ab} = 23.20 \text{ min}, \ \Delta t_{1bc} = 11.90 \text{ min}$ $\beta_{\text{lab}} = 0.983 \text{ K} \text{ min}^{-1}, \beta_{\text{1bc}} = 1.008 \text{ K} \text{ min}^{-1}$ $R_1 = 0.652$, $T_{2a} = 416.0 \text{ K}, T_{2b} = 449.2 \text{ K}, T_{2c} = 469.0 \text{ K}$ $= 6.90 \text{ min}, \ \Delta t_{2bc} = 3.55 \text{ min}$ $\beta_{2ab} = 4.812 \text{ K min}^{-1}, \ \beta_{2bc} = 5.577 \text{ K min}^{-1}$ $R_2 = 0.433$, $R = 0.543$

The average value of n from $f(\alpha) = (1 - \alpha)^n$ can be obtained by using the equation

$$
\frac{0.9583^{1-\overline{n}} - 0.5000^{1-\overline{n}}}{0.5000^{1-\overline{n}} - 0.0417^{1-\overline{n}}} = 0.543\tag{9}
$$

whose solution is $\bar{n} = 0.5$. Although this value is smaller with respect to that reported in the literature [5,6], one has to take into account that it is an average value for $0.0417 \le \alpha \le 0.9583$.

386

 \overline{E} = 29.40 kcal mol⁻¹ $\alpha_{\rm a} = 0.150, \ \alpha_{\rm b} = 0.450, \ \alpha_{\rm c} = 0.900$ T_{1a} = 479.5 K, T_{1b} = 514.0 K, T_{1c} = 522.0 K $\Delta t_{\rm lab} = 22.91 \text{ min}, \ \Delta t_{\rm 1bc} = 5.16 \text{ min}$ $\beta_{1ab} = 1.506$ K min⁻¹, $\beta_{1bc} = 1.549$ K min⁻¹ $R_1 = 1.526$, $T_{2a} = 499.0 \text{ K}$, $T_{2b} = 529.5 \text{ K}$, $T_{2c} = 536.0 \text{ K}$ $= 10.00$ min, $\Delta t_{2bc} =$ β_{2ab} = 3.050 K min⁻ 1.95 min , $\beta_{2bc} = 3.326$ K min⁻ $R_2 = 2.096$, $R = 1.811$ For $\tilde{f}(\alpha) = (1 - \alpha)^n$ one obtains $\bar{n} = -1.35$, whereas for $\tilde{f}(\alpha) = \alpha^m$ one

obtains $\overline{m} = 1.15$ which is more probable, thus

$$
\bar{f}(\alpha) = \alpha^{1.15}
$$
\n(10)

\nThis expression function is quite different from the two expected in the linear

This conversion function is quite different from that reported in the literature [7]. Nevertheless, such a function was tried because of its simplicity as well as of its dependence on only one parameter.

PRE-EXPONENTIAL FACTORS

The values of pre-exponential factors for different values of the conversion degree are listed in Table 1

As shown in Figs. 1 and 2 the dependences (log A , E) are linear. Thus, the data exhibit a particular kind of apparent mathematical compensation effect. The equations of the two straight lines are for dehydration of $CaC₂O₄ · H₂O$

$$
\log A = -3.06 + 0.51E \qquad r_{xy} = 0.9997 \tag{11}
$$

and for decomposition of $KMnO₄$

 $\log A = -2.51 + 0.42E$ $r_{xy} = 0.9989$ (12)

where r_{xy} are the corresponding correlation coefficients.

Generally, a dependence of the form

$$
\log A = a + bE \tag{13}
$$

should be considered.

Concerning the dependence $E(\alpha)$, as shown in a previous paper [3], this could be described by

$$
E = P(\alpha) \tag{14}
$$

where $P(\alpha)$ is a general polynomial in α . For a degree higher than that of the polynomial, one has to handle a large , inconvenient number of parameters

TABLE₁

Fig. 1. Plot of log A vs. E for dehydration of $CaC_2O_4 \cdot H_2O$.

Fig. 2. Plot of log A vs. E for decomposition of $KMnO₄$.

in the corresponding equations. Thus two kinds of linear dependences of the form

 (15) $y = a + bx$

where $y = E$ and $x = \alpha$ or $1/\alpha$ will be considered. The results are listed in Table 2.

As seen from Table 2 in a first approximation the following dependences should be considered

$$
E \approx a_1 + b_1 \alpha \tag{16}
$$

$$
E \approx a_2 + b_2 \frac{1}{\alpha} \tag{17}
$$

Taking into account eqn. (13) it follows that

$$
\log A \approx a_1' + b_1' \alpha \tag{18}
$$

$$
\log A \approx a_2' + b_2' \frac{1}{\alpha} \tag{19}
$$

By introducing in the fundamental rate equation of non-isothermal kinetics

$$
\frac{\mathrm{d}\alpha}{\mathrm{d}T} = \frac{A}{\beta} \mathbf{f}(\alpha) e^{-E/RT}
$$

From eqns. (16) and (18), and (17) and (19) it turns out that

$$
\frac{\mathrm{d}\alpha}{\mathrm{d}T} = \frac{A}{\beta}\bar{\mathbf{f}}(\alpha) e^{(m\alpha + n/T + p\alpha/T)}
$$
(20)

and

$$
\frac{\mathrm{d}\alpha}{\mathrm{d}T} = \frac{A}{\beta}\bar{\mathbf{f}}(\alpha) e^{(m'/\alpha + n'/T + p/\alpha)}
$$
 (21)

CONCLUSIONS

Equations (20) and (21) take into account the dependences $A(\alpha)$ and $E(\alpha)$. That is the reason for proposing them as new rate equations in non-isothermal kinetics. Future papers will deal with the methods of mathematical working of these equations.

REFERENCES

- 1 E. Urbanovici and E. Segal, Thermochim. Acta, 91 (1985) 373.
- 2 E. Urbanovici and E. Segal, Thermochim. Acta, in press.
- 3 E. Urbanovici and E. Segal, Thermochim. Acta, in press.
- 4 E. Urbanovici and E. Segal, Thermochim. Acta, 91 (1985) 383.
- 5 E.S. Freeman and B. Carroll, J. Phys. Chem., 62 (1958) 394.
- 6 A.W. Coats and J.P. Redfern, Nature (London), 201 (1964) 68.
- 7 E.G. Prout and F.C. Tompkins, Trans. Faraday Soc., 40 (1944) 488.